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•The effects of the anthropogenic increase in atmospheric greenhouse gases 

(GHGs) concentration on climate change are being widely debated 

• Of the three biogenic GHGs (i.e., carbon dioxide (CO2), methane (CH4) and 

nitrous oxide (N2O)), N2O is considered to be the most potent.  

• The100 year global warming potential of N2O is about 320 times as strong as 

that of CO2.  

•More importantly, N2O concentration is increasing in the atmosphere at the 

rate of 0.6-0.9 ppbv per year. 

•It has been estimated that in California, agricultural soils accounts for 64% of 

the total N2O emissions.  

•California’s San Joaquin Valley (SJV) is among the major producers of 

cotton, forage and vegetables in the U.S. 

•Rectangular stainless steel chamber bases (50x30x8 cm) and tops 

(50x30x10 cm) covered with reflective insulating material. 

•Chamber gas samples collected at 0, 20 & 30 min. and one ambient gas 

sample. 

•20 mL gas sample with needle of a polypropylene syringe through 

sampling port and injected  into evacuated 12 mL glass vials 

•Soil moisture in addition to air temperature inside and outside the 

chamber  during each gas sampling Gas samples analyzed (ppm data)  

using a Gas Chromatograph 

•Tillage 

•Fertilizer application 

•Irrigation 

•Rainfall 

• Giltrap et al. (2010). "DNDC: A process-based model of greenhouse gas fluxes from agricultural soils." 

Agriculture, Ecosystems & Environment 136(3-4): 292-300 

• www.dndc.sr.unh.edu 

• Babu, et al., 2006. Field validation of DNDC model for methane and nitrous oxide emissions from rice-

based production systems of India. Nutrient Cycling in Agroecosystems 74, 157–174 

This phase: To determine detailed time series of N2O fluxes and underlying 

factors at crucial management events (irrigation, fertilization, etc.) in 

representative agroecosystems in Central Valley of California, using flux 

chambers. 

Long term: 

•Measure and determine parameters for calibration of the Denitrification- 

Decomposition (DNDC) model. 

•To evaluate the potential of the (DNDC) model to predict N2O emissions from 

California corn, cotton and tomato cropping systems.  
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Further Information 

Refer to Figure 1:  

•In a cotton field fertilized with UAN 32, N2O fluxes ranged from less than 

10 to 40 ug N/m2/h for plots receiving 50 to 100lbs N/acre, respectively. 

• After an irrigation event, these fluxes increased to 20 to 80 ug N/m2/h. 

•Nitrification inhibitor significantly reduced N2O fluxes  from  100 lbs 

N/acre treatment before and after irrigation event. 

•Significant effect of nitrification inhibitor for 50 lbs N/acre after irrigation. 
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Management 

-  Crop rotation 

-  Tillage 

-  Fertilization 

-  Manure use 

-  Irrigation 

-  Grazing 

DNDC 

1. Soil water movement 

2. Plant-soil C dynamics 

3. N transformation  
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DNDC bridges between ecological drivers and GHG emissions  
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N leaching 

Sampling Events 
• Calibration of the DNDC model 

• Compare predicted and measured fluxes under varying fertilizer and 

irrigation regimes 

Figure 1:N2O flux measurements obtained from cotton with various fertilizer treatments 

following irrigation events.  

Photos of   EPA approved flux 

chambers techniques being used 

in the field and the Gas 

Chromatograph (GC) used for 

nitrous oxide determinations in 

the laboratory. 
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