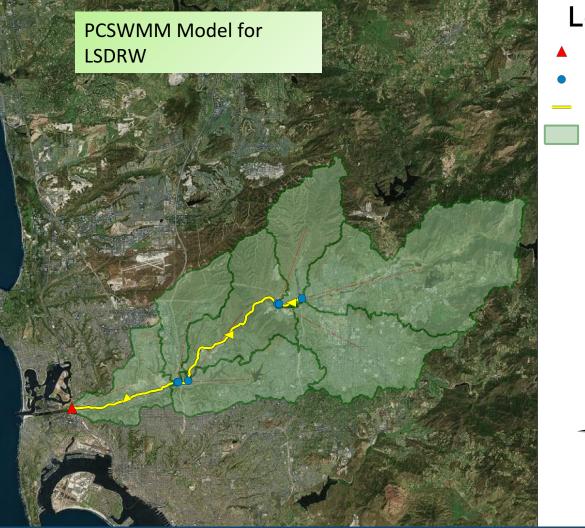
Characterization of stormwater debris model parameters in southern California's dense urbanized watersheds


Kian Bagheri, Joint Doctoral Student^{1,2} Hasan Davani, Assistant Professor¹

Catch Basin Insert for Trash Removal, Courtesy of http://unitedstormwater.com/images/installed_drainpac.jpg

Data Input for		<u>Source</u>				
PCSWMM						
Digital Elevation		USGS Earth Explorer				
Models						
Hourly Rainfall		NOAA Climate Data Online				
Data						
Hydrologic soil		Soil Survey Geographic Database				
groups						
Evaporation Data		The California Irrigation Management				
		Information System (CIMIS)				
Land Use Data		San Diego Association of Governments				
		(SANDAG) /County of Los Angeles Public				
		Works Website				
Leg Simplified Land Use	Ind					
Simplified Land	Ind	Watershed (LSDRW) sidential tail and tolesale				

Legend Outfalls Junctions Conduits

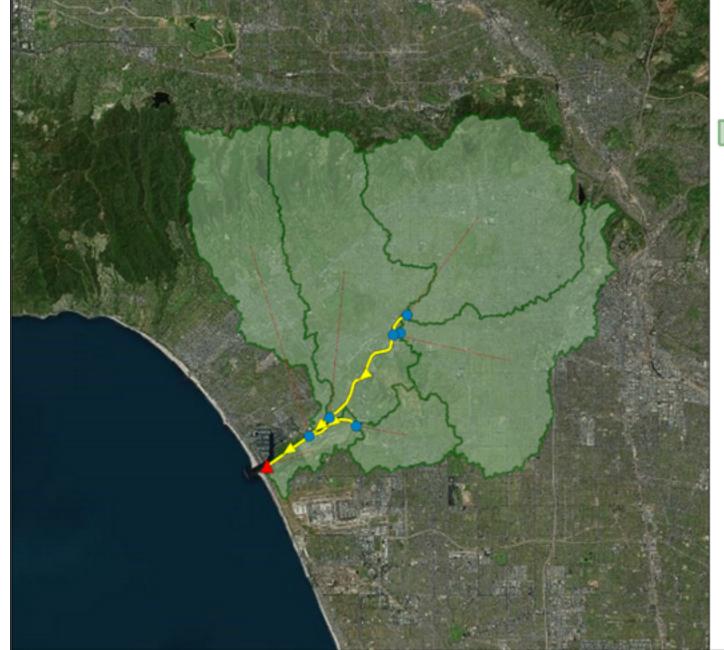
Subcatchm ents

- Total Area: 834 sq. miles (533,760 acres)
- **Populatio**n: ~9 million people
- Percentage of Impervious Surfaces: ~31 %
- Land Use:
 - 37% Residential
 - 8% Commercial
 - 11% Industrial
 - 44% Open Space
- Mean Annual Rainfall: ~21 inches

PCSWMM Model For Los Angeles River Watershed

Legend

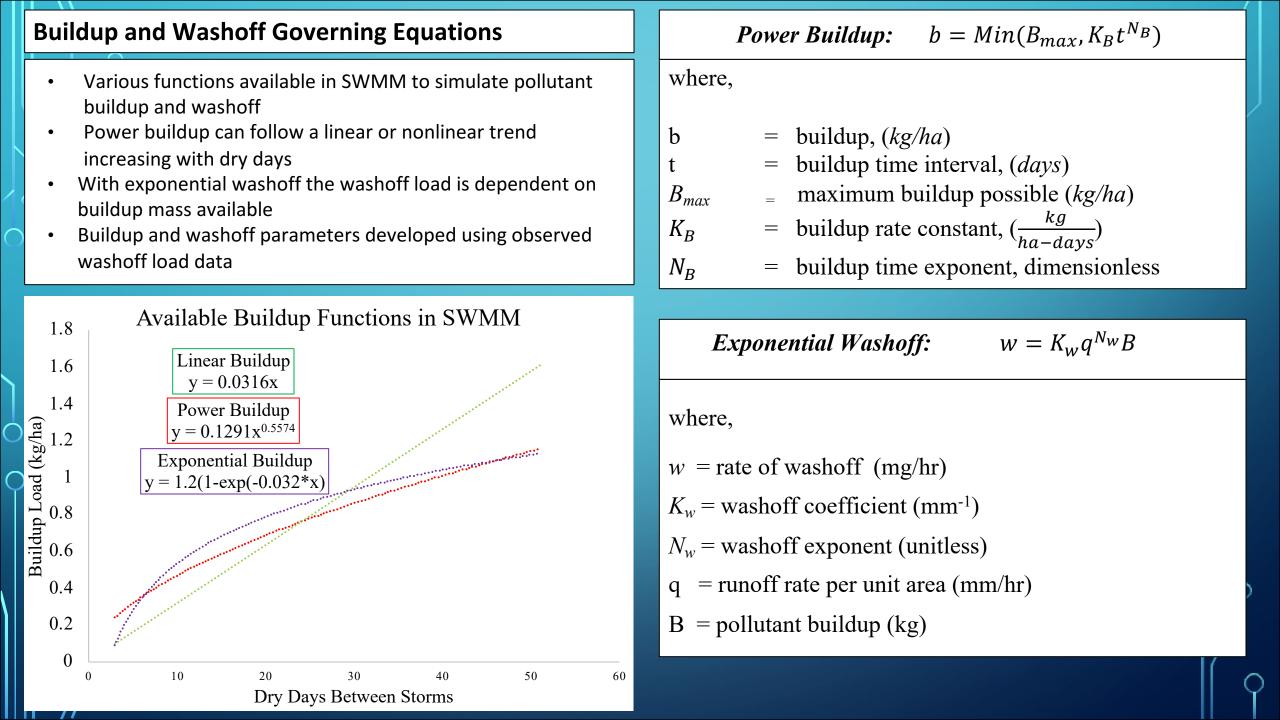
- Junctions
- Outfalls
- Conduits
- Subcatchments

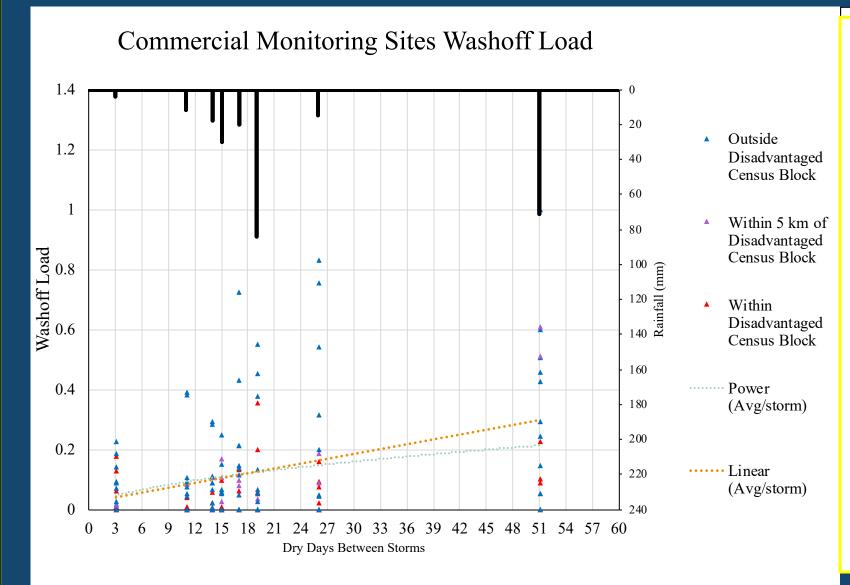


- Total Area: 130 sq. miles (83,200 acres)
- **Populatio**n: ~1.5 million people
- Percentage of Impervious Surfaces: ~65 %
- Land Use:

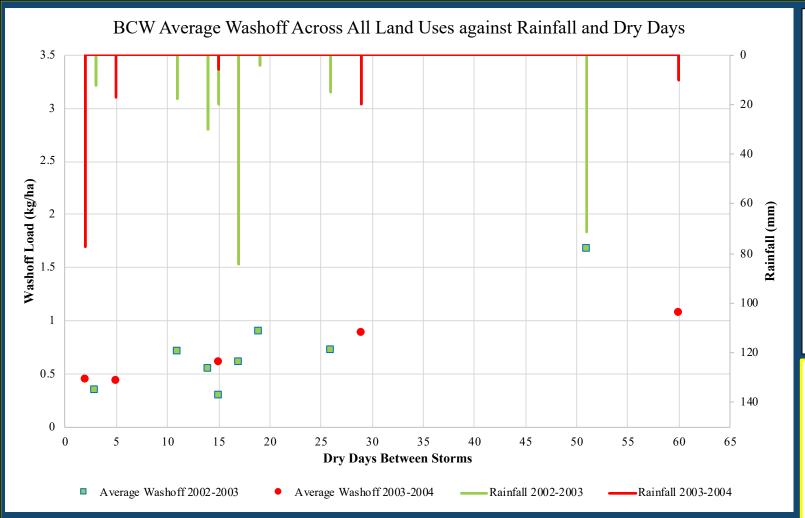
٠

- 64% Residential
- 8% Commercial
- 4% Industrial
- 17% Open Space
- Mean Annual Rainfall: ~16.4 inches


PCSWMM Model For Ballona Creek Watershed

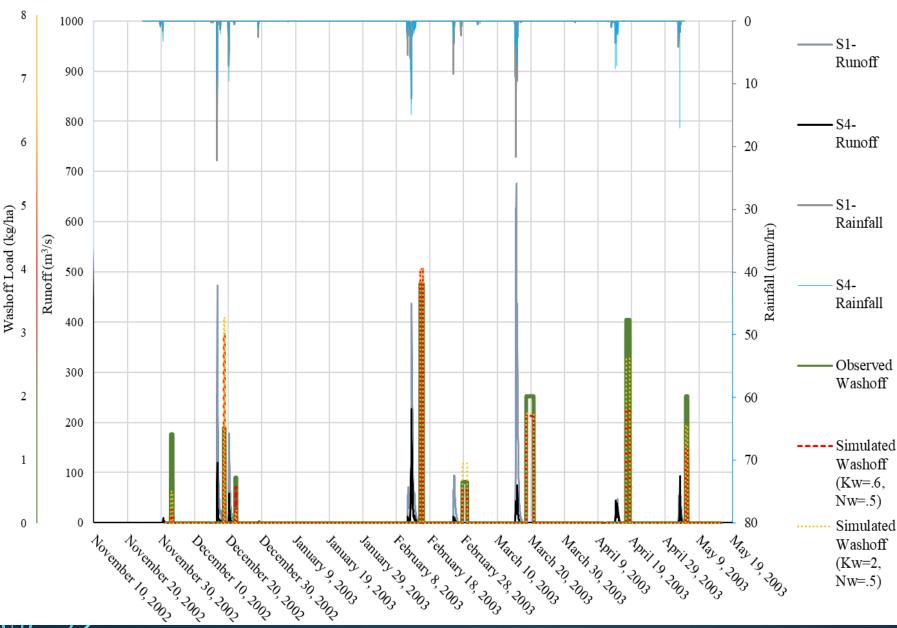

Legend

- Junctions
- Outfalls
- Conduits
 - Subcatchments



TRASH FROM BALLONA CREEK YEAR 2002-2003

- Highest rainfall did not produce highest washoff load
- High rainfall accompanied with longest accumulation period produced greatest washoff load
- There is an upward trend of washoff load with respect to increasing dry days.
- With this watershed and land use there is poor correlation between socioeconomic data and washed off litter



- First year rainfall **11.32 inches**, with a total load of **3714 lbs.**
- Second year rainfall 5.94 inches with a total load of 1622 lbs.

- Figure shows two years of rainfall-washoff (load) for the BCW with observed data
- Different storm events are plotted nonsequential on the top axis.

•

- The storm events are plotted with total rainfall depth against dry days leading up to storm
- Storm events with similar buildup days but different washoff loads were used as the basis for developing washoff parameters
- The storm that occurred after 50 dry days (2002-2003) produced higher washoff loads than the storm after 60 dry days (2003-2004)
- This suggests that the increased rainfall was able to mobilize more of the available litter load

- - S4 is further downstream than S1

LARW

- Simulated washoff is plotted with observed washoff for each storm in 2002-2003
- Washoff parameters were modified to test the sensitivity of washoff load with respect to washoff parameters.

8

		Results				Thank you!
Watershed	Simulation Year	Total loading from PCSWMM	Total Loading per unit area	Total Runoff Volume from PCSWMM (m ³)	Total Rainfall for Simulation	Kian Bagheri kbagheri@sdsu.edu
		(kg)	(kg/ha)		Year (mm)	Acknowledgments
BCW	2002- 2003	155,145	4.61	28,588,000	417.1	NOAA Grant
BCW	2003- 2004	103,205	3.07	18,334,400	223.5	<u>Hilary McMillan</u> Overall Program Lead, SDSU Geography
LARW	2002- 2003	2,486,808	11.51	237,182,300	404.5	
LARW	2003- 2004	1,584,020	7.33	124,718,100	226.8	<u><i>Trent Biggs</i></u> Debris Sources Co-Lead, SDSU
LSDRW	2002- 2003	275,958	6.58	27,907,600	301.5	Geography
LSDRW	2003- 2004	141,086	3.36	11,488,400	138.4	<i>Hassan Davani</i> Stormwater Modeling Lead, SDSU Civil Construction Environmental Engineering
<u>Future Work</u>						
 Validate LSDRW simulated results with field sampling Validate BCW with Pallone Creak Tresh Intercentor 						9
• Validate BCW with Ballona Creek Trash Interceptor						